• 首页 首页 icon
  • 工具库 工具库 icon
    • IP查询 IP查询 icon
  • 内容库 内容库 icon
    • 快讯库 快讯库 icon
    • 精品库 精品库 icon
    • 问答库 问答库 icon
  • 更多 更多 icon
    • 服务条款 服务条款 icon

LSTM回归预测长短期记忆网络的数据回归预测附matlab完整代码

武飞扬头像
matlab科研助手
帮助1

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

长短期记忆网络(Long Short-Term Memory,LSTM)是一种常用于处理序列数据的循环神经网络(Recurrent Neural Network,RNN)的变种。相比传统的RNN,LSTM能够更好地解决长期依赖问题,具有较强的记忆能力。

LSTM通过引入门控机制来控制信息的流动和遗忘,从而实现对长期依赖关系的建模。其核心思想是使用门控单元来控制信息的输入、输出和遗忘,包括遗忘门、输入门和输出门。

LSTM的基本结构如下:

  1. 输入门(Input Gate):决定是否将当前输入信息纳入记忆中。由一个sigmoid激活函数和一个点乘操作组成。输入门的输出范围在0到1之间,0表示完全忽略当前输入,1表示完全保留当前输入。
  2. 遗忘门(Forget Gate):决定是否从记忆中删除某些信息。同样由一个sigmoid激活函数和一个点乘操作组成。遗忘门的输出范围在0到1之间,0表示完全忘记先前的记忆,1表示完全保留先前的记忆。
  3. 记忆单元(Memory Cell):用于存储和传递先前的记忆信息。通过遗忘门和输入门来控制信息的删除和添加。
  4. 输出门(Output Gate):决定当前时刻的输出。由一个sigmoid激活函数和一个点乘操作组成。输出门的输出范围在0到1之间,控制着记忆单元中的信息如何影响当前时刻的输出。

通过这些门控机制,LSTM可以选择性地保留、遗忘和输出信息,实现对长期依赖关系的建模。这使得LSTM在许多序列数据任务中取得了优秀的表现,如机器翻译、语音识别、文本生成等。

⛄ 代码

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res = xlsread('数据集.xlsx');

%%  划分训练集和测试集
temp = randperm(103);

P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);

P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
P_train =  double(reshape(P_train, 7, 1, 1, M));
P_test  =  double(reshape(P_test , 7, 1, 1, N));

t_train = t_train';
t_test  = t_test' ;

%%  数据格式转换
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end

for i = 1 : N
    p_test{i, 1}  = P_test( :, :, 1, i);
end

%%  创建模型
layers = [
    sequenceInputLayer(7)               % 建立输入层
    
    lstmLayer(4, 'OutputMode', 'last')  % LSTM层
    reluLayer                           % Relu激活层
    
    fullyConnectedLayer(1)              % 全连接层
    regressionLayer];                   % 回归层
 
%%  参数设置
options = trainingOptions('adam', ...      % Adam 梯度下降算法
    'MaxEpochs', 1500, ...                 % 最大迭代次数
    'InitialLearnRate', 0.01, ...          % 初始学习率为 0.01
    'LearnRateSchedule', 'piecewise', ...  % 学习率下降
    'LearnRateDropFactor', 0.1, ...        % 学习率下降因子
    'LearnRateDropPeriod', 1200, ...       % 经过 1200 次训练后 学习率为 0.01 * 0.1
    'Shuffle', 'every-epoch', ...          % 每次训练打乱数据集
    'Plots', 'training-progress', ...      % 画出曲线
    'Verbose', false);

%%  训练模型
net = trainNetwork(p_train, t_train, layers, options);

%%  仿真预测
t_sim1 = predict(net, p_train);
t_sim2 = predict(net, p_test );

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);

%%  查看网络结构
analyzeNetwork(net)

%%  绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['RMSE=' num2str(error1)]};
title(string)
xlim([1, M])
grid

figure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['RMSE=' num2str(error2)]};
title(string)
xlim([1, N])
grid

%%  相关指标计算
% R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

% MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

% MBE
mbe1 = sum(T_sim1' - T_train) ./ M ;
mbe2 = sum(T_sim2' - T_test ) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

%%  绘制散点图
sz = 25;
c = 'b';

figure
scatter(T_train, T_sim1, sz, c)
hold on
plot(xlim, ylim, '--k')
xlabel('训练集真实值');
ylabel('训练集预测值');
xlim([min(T_train) max(T_train)])
ylim([min(T_sim1) max(T_sim1)])
title('训练集预测值 vs. 训练集真实值')

figure
scatter(T_test, T_sim2, sz, c)
hold on
plot(xlim, ylim, '--k')
xlabel('测试集真实值');
ylabel('测试集预测值');
xlim([min(T_test) max(T_test)])
ylim([min(T_sim2) max(T_sim2)])
title('测试集预测值 vs. 测试集真实值')

⛄ 运行结果

学新通

学新通

学新通

学新通

⛄ 参考文献

[1] 徐一轩,伍保保卫国家家,王思敏,等.基于长短期记忆网络(LSTM)的数据中心温度预测算法[J].计算机技术与发展, 2019, 29(12):7.DOI:10.3969/j.issn.1673-629X.2019.12.001.

[2] 曹宇,张静萍,魏海平,等.基于长短期记忆网络LSTM模型的新冠病毒传播预测方法:CN202110405335.1[P].CN202110405335.1[2023-07-12].

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1.卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3.旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划
4.无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5.传感器部署优化、通信协议优化、路由优化、目标定位
6.信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号
7.生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化
8.微电网优化、无功优化、配电网重构、储能配置
9.元胞自动机交通流 人群疏散 病毒扩散 晶体生长

这篇好文章是转载于:学新通技术网

  • 版权申明: 本站部分内容来自互联网,仅供学习及演示用,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,请提供相关证据及您的身份证明,我们将在收到邮件后48小时内删除。
  • 本站站名: 学新通技术网
  • 本文地址: /boutique/detail/tanhiaejbh
系列文章
更多 icon
同类精品
更多 icon
继续加载